
Architecture Knowledge for Evaluating Scalable
Databases

Ian Gorton, John Klein
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{igorton, jklein}@sei.cmu.edu

Albert Nurgaliev
Institute for Software Research

Carnegie Mellon University
Pittsburgh, PA, USA

anurgali@andrew.cmu.edu

Abstract—Designing massively scalable, highly available big
data systems is an immense challenge for software architects. Big
data applications require distributed systems design principles to
create scalable solutions, and the selection and adoption of open
source and commercial technologies that can provide the
required quality attributes. In big data systems, the data
management layer presents unique engineering problems, arising
from the proliferation of new data models and distributed
technologies for building scalable, available data stores.
Architects must consequently compare candidate database
technology features and select platforms that can satisfy
application quality and cost requirements. In practice, the
inevitable absence of up-to-date, reliable technology evaluation
sources makes this comparison exercise a highly exploratory,
unstructured task. To address these problems, we have created a
detailed feature taxonomy that enables rigorous comparison and
evaluation of distributed database platforms. The taxonomy
captures the major architectural characteristics of distributed
databases, including data model and query capabilities. In this
paper we present the major elements of the feature taxonomy,
and demonstrate its utility by populating the taxonomy for nine
different database technologies. We also briefly describe
QuABaseBD, a knowledge base that we have built to support the
population and querying of database features by software
architects. QuABaseBD links the taxonomy to general quality
attribute scenarios and design tactics for big data systems. This
creates a unique, dynamic knowledge resource for architects
building big data systems.

Keywords—scalable software systems, big data, software
architecture knowledge base, feature taxonomy

I. INTRODUCTION
There has been no industry in the history of engineering

that exhibits the rapid rate of change we see in software
technologies. By their very nature, complex software products
can be created and evolved much more quickly than physical
products, which require redesign, retooling and manufacturing
[1]. In contrast, the barriers to software product evolution are
no greater than incorporating new functionality in to code,
testing, and releasing a new build for download on the Internet.

For software engineers building modern applications, there
exists a dizzying number of potential off-the-shelf components
that can be used as building blocks for substantial parts of a
solution [2]. This makes component selection, composition,
and validation a complex software engineering task that has
received considerable attention in the literature (e.g. [3], [4],

[5], [6]). While there is rarely a single ‘right’ answer when
selecting a complex component for use in an application,
selection of inappropriate components can be costly, reduce
downstream productivity due to extensive rework, and even
lead to project cancelation [7].

A contemporary application domain where there is
particular difficulty in component selection is that of massively
scalable, big data systems [8]. The exponential growth of data
in the last decade has fueled rapid innovation in a range of
components, including distributed caches, middleware and
databases. Internet-born organizations such as Google and
Amazon are at the cutting edge of this revolution, collecting,
storing, and analyzing the largest data repositories ever
constructed. Their pioneering efforts, for example [9] and [10],
along with those of numerous other big data innovators, have
created a variety of open source and commercial technologies
for organizations to exploit in constructing massively scalable,
highly available data repositories.

This technological revolution has instigated a major shift in
database platforms for building scalable systems. No longer are
relational databases the de facto standard for building data
repositories. Highly distributed, scalable “NoSQL” databases
[11] have emerged, which eschew strictly-defined normalized
data models, strong data consistency guarantees, and SQL
queries. These features are replaced with schema-less data
models, weak consistency guarantees, and proprietary APIs
that expose the underlying data management mechanisms to
the application programmer. Prominent examples of NoSQL
databases include Cassandra, Riak, neo4j and MongoDB.

NoSQL databases achieve scalability through horizontally
distributing data. In this context, distributed databases have
fundamental quality constraints, as defined by Brewer’s CAP
Theorem [12]. When a network partition occurs (“P”- arbitrary
message loss between nodes in the cluster), a system must trade
consistency (“C” - all readers see the same data) against
availability (“A” - every request receives a success/failure
response).

The implications of the CAP theorem are profound for
architects. To achieve high levels of scalability and availability,
distribution must be introduced in all system layers.
Application designs must then be aware of data replicas, handle
inconsistencies from conflicting replica updates, and continue
degraded operation in spite of inevitable failures of processors,
networks, and software. This leads to new and emerging design

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 JAN 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Architecture Knowledge for Evaluating Scalable Databases

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Nurgaliev /John Klein Ian Gorton Albert

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

principles, patterns and tactics based on established distributed
systems theory, which must be adopted to successfully build
scalable, big data systems [13].

This confluence of rapidly evolving technologies and (re-)
emerging design principles and patterns makes designing big
data systems immensely challenging. Application architectures
and design approaches must exploit the strengths of available
components and compose these into deployable, extensible and
scalable solutions.

This is especially challenging at the data storage layer. The
multitude of competing NoSQL database technologies creates a
complex and rapidly evolving design space for an architect to
navigate. Architects must carefully compare candidate database
technologies and features and select platforms that can satisfy
application quality and cost requirements. In the inevitable
absence of up-to-date, unbiased technology evaluations, this
comparison exercise is in practice a highly exploratory,
unstructured task that uses an Internet search engine as the
primary information gathering and assessment tool.

In this paper we introduce a detailed feature taxonomy that
can be used to systematically compare the capabilities of
distributed database technologies. This taxonomy was derived
from our experiences in evaluating databases for big data
systems in a number of applications domains (e.g. [14]). The
feature taxonomy describes both the core architectural
mechanisms of distributed databases, and the major data access
characteristics that pertain to the data architecture a given
database supports. We describe our experience populating this
taxonomy with the features of nine different databases to
demonstrate its efficacy. We also describe a dynamic
knowledge base we have built to semantically encode the
feature taxonomy so that it can be queried and visualized.

The major contributions of this paper are:

• The first presentation of a detailed, software and data
architecture-driven feature taxonomy for distributed
database systems.

• A demonstration of the efficacy of the taxonomy through its
population with the features from nine different database
technologies.

• A description of the semantic encoding and representation
of the feature taxonomy to support efficient knowledge
capture, query and visualization.

II. RELATED WORK
Our work builds upon and extends established work in

software architecture knowledge management [15]. Early
research in this area includes Kruchten [16], which introduced
an ontology describing architectural design decisions for
software systems. The ontology can be used to capture project-
specific design decisions, their attributes, and relationships to
create a graph of design decisions and their interdependencies.
Our feature taxonomy also describes a graph of related design
alternatives and relationships, but the knowledge relates to the
class of distributed databases as opposed to a specific project or
system. Hence, the knowledge has applicability to the broad
class of big data software systems.

Other research has focused on using knowledge models to
capture project-specific architectural decisions [17] and
annotate design artefacts using ontologies [18][19][20].
Ontologies for describing general architecture knowledge have
also been proposed. These including defining limited
vocabularies [21], formal definitions of architecture styles [22],
and supporting reuse of architecture documentation [23].
However, the inherent complexity of these approaches has
severely limited adoption in practice.

Formal knowledge models for capturing architecture-
related decisions also exist, for example [24], [25], [26], [27],
[28], and [29]. Shahin describes a conceptual framework for
these approaches that demonstrates significant overlap between
the proposed concepts [30]. Our representation of the feature
taxonomy takes a conceptually similar approach in that it
semantically codifies a collection of general capabilities of big
data systems, allowing an architect to explore the conceptual
design space.

A primary use case for our knowledge base that
semantically encodes the feature taxonomy is to provide
decision support for evaluating alternative database
technologies. Earlier work has demonstrated how a similar
approach based on feature categorization of technology
platforms can be effective in practice for middleware
technology evaluation [4]. Our work extends this approach by
reifying technology-specific knowledge as semantic
relationships that enable querying of the knowledge to rapidly
answer project-specific evaluation questions.

III. FEATURE TAXONOMY
Scalability in big data systems requires carefully

harmonized data, software and deployment architectures [13].
In the data layer, scalability requires partitioning the data sets
and their processing across multiple computing and storage
nodes. This inherently creates a distributed software
architecture in the data tier.

Contemporary database technologies adopt a variety of
approaches to achieve scalability. These approaches are
primarily distinguished by the data model that a database
supports and by the data distribution architecture it implements.
Therefore, the selection of a specific database technology has a
direct impact on the data and software architecture of an
application.

Our feature taxonomy for distributed databases reflects
these influences directly. It represents features in three
categories related directly to the data architecture – namely
Data Model, Query Languages, and Consistency – and four
categories related directly to the software architecture – namely
Scalability, Data Distribution, Data Replication, and Security.
We decomposed each of these feature categories into a
collection of specific features. Each feature has a set of allowed
values representing the spectrum of design decisions that are
taken in distributed databases. Depending on the database,
some features may be assigned one or more of these values to
fully characterize the database’s capabilities.

In the following subsections we describe these feature
categories and the spectrum of design decisions that are

represented in our feature taxonomy. Space precludes a
detailed description of each features. Instead we briefly
describe the major classes of features and their implications on
both the data and software architecture.

A. Data Model
The data model supported by a distributed database dictates

both how application data can be organized, and to a large
extent, how it can be queried. Our taxonomy, shown in Table 1,
captures these data architecture issues, organizing features in
three broad groups:

1. Data Organization: These features capture how a database
platform enables data to be modeled, whether fixed
schemas are required, and support for hierarchical data
objects.

2. Keys and Indexes: Flexibility in data object key definition,
including support for secondary and composite keys, can
greatly influence application performance, scalability and
modifiability. This collection of features describes how
any given database support key definition.

3. Query Approaches: This collection of features describes
the options available for querying a database, including
key-based searching, text searching, and support for Map-
Reduce based aggregation queries.

Table 1. Data Model Features
Feature Allowed Values

Data Model Column, Key-Value, Graph, Document,
Object, Relational

Fixed Schema Required, optional, none
Opaque Data Objects Required, not required
Hierarchical Data Objects Supported, not supported
Automatic Primary Key
Allocation

Supported, not supported

Composite Keys Supported, not supported
Secondary Indexes Supported, not supported
Query by Key Range Supported, not supported
Query by Partial Key Supported, not supported
Query by Non-Key Value
(Scan)

Supported, not supported

Map Reduce API Builtin, integration with external
framework, not supported

Indexed Text Search Support in plugin (e.g. Solr), builtin
proprietary, not supported

B. Query Languages
The query language features of a database directly affect

application performance and scalability. For example, if a
database does not return sorted result sets, the application itself
must retrieve data from the database and perform the sort. For
big data applications in which large results sets are common,
this places a significant performance burden on an application,
and uses resources (memory/CPU/network) that may be scarce
under high loads.

Our feature taxonomy captures the broad query language
characteristics, such declarative or imperative styles and
languages supported, and the major detailed features that
impart quality concerns. Table 2 illustrates these features. Note
that for some features, for example Languages Supported and
Triggers, multiple values may be assigned to the same feature

for a database. This is a common characteristic that is seen
across all categories in feature taxonomy.

Table 2. Query Language Features
Feature Allowed Values

API-Based Supported, Not Supported
Declarative Supported, Not Supported
REST/HTTP-based Supported, Not Supported
Languages supported Java, C#, Python, C/C++, Perl, Ruby, Scala,

Erlang, Javascript
Cursor-based queries Supported, Not Supported
JOIN queries Supported, Not Supported
Complex data types Lists, maps, sets, nested structures, arrays,

geospatial, none
Key matching options Exact, partial match, wildcards, regular

expressions
Sorting of query results Ascending, descending, none
Triggers Pre-commit, post-commit, none
Expire data values Supported, Not Supported

C. Consistency
With the emergence of scalable database platforms,

consistency has become a prominent quality of an application’s
data architecture. Transactional consistency properties that are
standard in relational databases are rarely supported in NoSQL
databases. Instead, a variety of approaches are supported for
both transactional and replica consistency. This inevitably
places a burden on the application to adopt designs that
maintain strong data consistency or operate correctly with
weaker consistency. A common design denormalizes data
records so that a set of dependent updates can be performed in
a single database operation. While this approach ensures
consistency in the absence of ACID transactional semantics,
denormalization also leads to increased data sizes due to
duplication, and increased processing in order to keep
duplicates consistent.

The features in Table 3 are grouped into those that support
strong consistency, and those that support eventual (replica)
consistency. Strong consistency features such as ACID and
distributed transactions reduce application complexity at the
cost of reduced scalability. Eventual consistency is a common
alternative approach in scalable databases. Eventual
consistency relies on storing replicas of every data object to
distribute processing loads and provide high availability in the
face of the database node failures. The taxonomy describes a
range of features that constitute eventually consistent
mechanisms, including conflict detection and resolution
approaches.

D. Scalability
Evaluating qualities like performance and scalability in

absolute terms require benchmarks and prototypes to establish
empirical measures. However, the core architectural design
decisions that underpin a database implementation greatly
affect the scalability that an application can achieve. In our
taxonomy, we capture some of these core scalability features,
shown in Table 4.

Table 3. Consistency Features
Feature Allowed Values

Object-level atomic updates Supported, Multi-Value Concurrency
Control, conflicts allowed

ACID transactions in a
single database

Supported, lightweight transactions (e.g.
test and set), not supported

Distributed ACID
transactions

Supported, not supported

Durable writes Supported, not supported
Quorum Reads/Writes
(replica consistency)

In client API, in database configuration, in
the datacenter configuration, not supported

Specify number of replicas
to write to

In client API, in database configuration, not
supported, not applicable – master-slave

Behavior when specified
number or replica writes
fails

Rollback at all replicas, No rollback, error
returned, hinted handoffs, not supported

Writes configured to never
fail

Supported, not supported

Specify number of replicas
to read from

In client API, in database configuration, not
supported, not applicable – master-slave

Read from master replica
only

Not supported, in the client API, not
applicable – peer-to-peer

Object level timestamps to
detect conflicts

Supported, not applicable (single threaded),
not applicable (master slave), not supported

Table 4. Scalability Features

Feature Allowed Values
Scalable distribution
architecture

Replicate entire database only; horizontal
data partitioning; horizontal data
partitioning and replication

Scaling out – adding data
storage capacity

Automatic data rebalancing; manual
database rebalancing; not applicable (single
server only)

Request load balancing HTTP-based load balancer required; client
requests balanced across any coordinator;
fixed connection to a request coordinator

Granularity of write locks Locks on data object only; Table level
locks; database level locks; no locks (single
threaded); no locks (optimistic concurrency
control); no locks (conflicts allowed)

Scalable request processing
architecture

Fully distributed – any node can act as a
coordinator; centralized coordinator but can
be replicated; centralized coordinator (no
replication); requires external oad balancer

Horizontal scaling spreads a data set across multiple nodes.
In some databases, it is only possible to replicate complete
copies of a database onto multiple nodes, which restricts
scalability to the capacity of a single node - this is scaling up.
Other databases support horizontal partitions, or sharding, to
scale data on to multiple nodes.

Another key determinant of scalability is the approach to
distributing client requests across database nodes. Bottlenecks
in the request processing path for reads and writes can rapidly
become inhibitors of scalability in a big data system. These
bottlenecks are typically request or transaction coordinators
that cannot be distributed and replicated, or processes that store
configuration state that must be accessed frequently during
request processing.

E. Data Distribution
There are a number of software architecture alternatives

that a database can adopt to achieve data distribution. These
alternatives can greatly affect the quality attributes of the
resulting system. To this end, the features in this category

capture how a given database coordinates access to data that is
distributed over deployment configurations ranging from single
clusters to multiple geographically distributed data centers,
shown in Table 5.

The mechanisms used to locate data and return results to
requesting clients are an important aspect of distributed data
access that affects performance, availability and scalability.
Some databases provide a central coordinator that handles all
requests and passes them on to other nodes where the data is
located for processing. A more scalable solution is provided by
databases that allow any database node to accept a request and
act as the request coordinator.

Table 5. Data Distribution
Feature Allowed Values

Data distribution
architecture

Single database only; master-single slave;
master-multiple slaves; multimaster

Data distribution method User specified shard key; assigned key
ranges to nodes; consistent hashing; not
applicable (single server only)

Automatic data rebalancing Failure triggered; new storage triggered;
scheduled rebalancing; manual rebalancing;
no applicable (single server only)

Physical data distribution Single cluster; rack-aware on single cluster;
multiple co-located clusters; multiple data
centers

Distributed query
architecture

Centralized process for key lookup;
distributed process for key lookup;
Direct replica connection only

Queries using non-shard key
values

Secondary indexes; non-indexed (scan); not
supported

Merging results from
multiple shards

Random order; sorted order; paged from
server; not supported

F. Data Replication
Data replication is necessary to achieve high availability in

big data systems. This feature category is shown in Table 6.
Replication can also enhance performance and scalability by
distributing database read and write requests across replicas,
with the inevitable trade-off of maintaining replica consistency.
All databases that support replication adopt either a master-
slave or peer-to-peer (multi-master) architecture, and typically
allow a configurable number of replicas that can be
geographically distributed across data centers.

Replication introduces the requirement on a database to
handle replica failures. Various mechanisms, ranging from
fully automated to administrative, are seen across database for
replica failure and recovery. Recovery is complex, as it
requires a replica to ‘catch up’ from its failed state and become
a true replica of the current database state. This can be done by
replaying transaction logs, or by simply copying the current
state to the recovered replica.

G. Security
Security is necessary in the data tier of an application to

ensure data integrity and prevent unauthorized access. This
feature category is shown in Table 7. Our taxonomy captures
the approaches supported by a database for authentication,
which is often a key factor determining how a data platform
can be integrated into an existing security domain. We also
capture features such as roles that greatly ease the overheads
and complexity of administering database security, and support

for encryption – an important feature for applications requiring
the highest levels of data security.

Table 6. Data Replication Features
Feature Allowed Values

Replication Architecture Master-slave; peer-to-peer
Replication for backup Supported; not supported
Replication across data
centers

Supported by data center aware features;
Supported by standard replication
mechanisms; Enterprise edition only

Replica writes To master replica only; to any replica; to
multiple replicas; to specified replica
(configurable)

Replica reads from master replica only; from any replica;
from multiple replicas; from specified
replica (configurable)

Read repair Per query; background; not applicable
Automatic Replica Failure
Detection

Supported; not supported

Automatic Failover Supported; not supported
Automatic new master
election after failure

Supported; not supported; not applicable

Replica recovery and
synchronization

Performed by administrator; supported
automatically; not supported

Table 7. Security Features

Feature Allowed Values
Client authentication Custom user/password; X509; LDAP;

Kerberos; HTTPS
Server authentication Shared keyfile; server credentials
Credential store In database; external file
Role-based security Supported; not supported
Security role options Multiple roles per user; role inheritance;

default roles; custom roles; not supported
Scope of rules Cluster; database; collection; object; field
Database encryption Supported; not supported
Logging Configurable event logging; configurable

log flush conditions; default logging only

IV. KNOWLEDGE BASE OVERVIEW
This section describes how we instantiated and populated

the feature taxonomy in a knowledge base that we call Quality
Attributes at Scale Knowledge Base, or QuABaseBD
(pronounced “k-base”).

QuABaseBD is a linked collection of computer science and
software engineering knowledge created specifically for
designing big data systems with NoSQL databases. As depicted
in Figure 1, QuABaseBD is presented to a user through a Web-
based wiki interface. QuABaseBD is built upon the Semantic
MediaWiki (SMW) platform (https://semantic-mediawiki.org/),
which adds dynamic, semantic capabilities to the base
MediaWiki implementation (as used, for example, for
Wikipedia).

In contrast to a typical wiki such as Wikipedia, the pages in
QuABaseBD are dynamically generated from information that
users enter into a variety of structured forms. This significantly
simplifies content authoring for QuABaseBD and ensures
internal consistency, as newly-added content is automatically
included in summary pages and query results without needing
to manually add links. Form-based data entry structures
knowledge capture when populating the knowledge base,
which ensures that the new content adheres to the underlying
knowledge model. Hence the dynamic, structured nature of the

QuABaseBD ensures it can consistently capture and render
knowledge useful for software architects exploring the design
space for big data systems.

QuABaseBD exploits these dynamic, semantic capabilities
to implement a model that represents fundamental software
architecture design knowledge for building big data systems.
The initial version of QuABaseBD populates this knowledge
model specifically for designing the data layer of an
application.

QuABaseBD links two distinct areas of knowledge through
an underlying semantic model. These areas are:

1. Software design principles for big data systems:
Knowledge pertaining to specific quality attribute
scenarios and design tactics for big data systems.

2. Database feature taxonomy: Knowledge pertaining to
the specific capabilities of NoSQL and NewSQL databases
to support database evaluation and comparison, as
described in the previous section.

In the following, we describe how we link these two areas

in the QuABaseBD knowledge model, and how we use the
features of the SMW platform to populate and query the feature
taxonomy.

Figure 1. Conceptual Architecture of QuABaseBD

A. Semantic Knowledge Model
The SMW platform supports semantic annotation of

information as Categories and Properties. These annotations
can be applied in an ad hoc manner as markup in the wikitext
allowing the semantic structure to emerge from the contributed
content. In contrast, QuABaseBD takes a structured approach
to knowledge representation, as discussed above. All content is
created using a form and rendered using a template, and the set
of forms and templates embodies the structure of the semantic
knowledge model.

The knowledge model is split into two main sections. One
section represents software architecture concepts related to
quality attributes, quality attribute scenarios, and architecture
tactics. This section of the knowledge model is not intended to
be a complete representation of general software design
knowledge, but instead, it represents a growing collection of
concepts and properties needed to reason about big data

systems design and database technology selection. The
purposes of this section of the model are to support the
definition of architecturally significant requirements, to
identify the quality attribute tradeoffs that are inherent in
distributed data-intensive systems, and to describe design
tactics to achieve particular architecture requirements. The
second section of the knowledge model represents the feature
taxonomy described above.

The novelty of the QuABaseBD knowledge model is the
linkage between the two sections through the relationship of an
instance of a tactic to the instances of the features of a
particular database that implement that tactic. This is shown in
the extract of the knowledge model shown in Figure 2.

Here we see that a Quality Attribute is represented using a
General Scenario. The general scenario includes only those
stimuli, responses, and response measures that are relevant in
big data systems, in contrast to the abstract general scenarios
presented by Bass and colleagues [31]. A general scenario is a
prototype that generates many Quality Attribute Scenarios,
each of which combines a stimulus and response in the context
of a big data system. A Quality Attribute Scenario covers a
specific situation, and so we can identify the Tactics that can be
employed to achieve the desired scenario response. Tactics
represent tradeoffs – each tactic promotes at least one quality
attribute, and may inhibit other quality attributes. Although not
represented in Figure 2, the knowledge model also includes
“anti-tactics”, representing design approaches that prevent the
desired response from being achieved.

Key

Quality Attribute

General
Scenario

Quality Attribute
Scenario

Tactic

Database

Feature
Category

Feature

Attributes

Concept

1 - N Relationship

Promotes Inhibits

Is
Supported

By

Supports

Figure 2. Extract from QuABaseBD Knowledge Model

Tactics also represent specific design decisions that can be
realized by a Database implementation, so we can say that a
database supports a collection of tactics. This support is
provided by one or more Features, which are grouped into
Feature Categories. Finally, a feature has one or more
Attributes, which represent the allowable values for the feature.

This relationship between features and tactics allows an
architect to reason architecture qualities. For example, an
architect may reason about the need for certain database
features in order to achieve a particular system quality, or how
different implementations of a feature in different databases
will affect system qualities.

An example of how QuABaseBD uses a template to link
tactics to database implementations is shown in Figure 3. This
illustrates the feature page for the Read Repair feature, which
is in the feature category Replication Features. The related
tactics that are supported by this feature are selected during the
content creation process, and the table showing which
databases implement the feature is generated dynamically by
querying the knowledge base content.

Figure 3. Linking from Tactics to Implementations and
Features

B. QuABaseBD Implementation of Feature Taxonomy
From the main QuABaseBD page, users can choose to

explore the knowledge base content for specific database
technologies. Figure 4 shows an extract from the main database
page. This table is a dynamically generated list (the result of
the SMW query shown in Figure 5) of the databases for which
QuABaseBD currently provides information.

Figure 4. QuABaseBD Database Knowledge

{{#ask: [[Category:Database]]
|intro=Select any of the database below to get
information on their features and the tactics they
support
| mainlabel=Database
| ?Has DB Model=Data Model
| sort=Has DB Model
| order=asc
}}

Figure 5. Query to List Databases and Data Model Types

When a user navigates to the content for a specific
database, for example Riak, they see a page that gives a brief
overview of the database and a table listing the feature
categories from the feature taxonomy, as shown in Figure 6.

Knowledge creators can edit the values for the feature
taxonomy for each database. As discussed above, all content
creation is done using SMW forms – clicking on an ‘Edit’ link
displays a form for the associated feature category, as shown in
Figure 7 for the data replication category.The forms render the
elements of the feature taxonomy as fields organized in tabs,
along with a valid set of values that a knowledge creator can
select from for each feature. Using forms in this manner, the
QuABaseBD implementation ensures a consistent set of values
for each feature, thus greatly facilitating ease of comparison
across databases.

Figure 6. QuABaseBD Knowledge for Riak

Figure 7. Populating the QuABaseBD Feature Taxonomy
for Riak Replication

When a form is saved by a knowledge creator, an
associated SMW template performs two actions:

1. It associates the selected feature values with a semantic
property for each feature, creating a collection of RDF
triples with the general form {Feature, Has Value, Value}
to populate the semantic feature taxonomy

2. It generates a wiki page for knowledge consumers by
substituting the selected feature values into a text template
that describes each feature and the associated value for
each database.

An example of the resulting generated wiki page is shown
in Figure 8. Therefore, to a knowledge consumer, the
mechanics of selecting alternate feature values is completely
hidden. They simply see a description of each feature and how
it is realized in the associated database.

A major advantage of associating each feature with a
semantic property is that it facilitates fine grain searching
across the different features for each database. Figure 9
illustrates the search facilities available to users for each feature
category. By default, if no specific feature values are selected
in the query form (top left), then all the databases in the
QuABaseBD that have a completed feature page for that
category are displayed (bottom right). The generated table
facilitates a direct comparison of the databases in the
QuABaseBD. The user can then choose specific values in the
query form for the various features they are interested in and
generate customized result sets to answer their specific
questions..

Figure 8. Template-generated Wiki Page for Riak Replication

Figure 9. Querying the Database Features

V. DEMONSTRATING FEATURE TAXONOMY EFFICACY
The feature taxonomy and the initial implementation of

QuABaseBD were co-developed during an evaluation of four
NoSQL databases, namely MongoDB, Cassandra, Neo4j and
Riak [14]. During this project, QuABaseBD was populated
with information about those databases by the authors of this
paper. The feature taxonomy and the allowed values were
based on the capabilities of the four databases. As each of these
databases represented a different NoSQL data model, we
expected that the feature taxonomy we developed would be
sufficiently general to facilitate differentiation amongst a much
larger collection of technologies.

To assess the efficacy of the feature taxonomy, we further
populated QuABaseBD with information about five other
databases: Accumulo, Hbase, CouchDB, FoundationDB, and
VoltDB. Graduate students helped perform this content
curation1: Each contributor located and reviewed the product
documentation for the database published on the Internet by the
vendor or open source developer, and used the QuABaseBD
SMW forms to enter the relevant information to populate the
feature taxonomy.

Figure 10. Clustering of Implementations for the Load
Balancing Feature

Throughout this curation process, we observed no
additional features were needed to describe the functionality
delivered by any of these databases, and curators were able to
map all product features to one or more of the taxonomy
features. For several features, we incorporated new “allowed
values” to more precisely capture a particular database’s
capabilities. For example, CouchDB eschews object locking on

1 http://en.wikipedia.org/wiki/Content_curation

updates in favor of Multi-Version Concurrency Control
(MVCC). This approach was not supported in our initial set of
databases, and hence we added MVCC as an allowed value to
for the Object Level Atomic Updates feature. Additional
allowed values for a number of features were also necessary to
describe the capabilities of two so-called ‘NewSQL’ databases
that were incorporated into QuABaseBD, namely VoltDB and
FoundationDB. These databases are distributed, scalable
implementations of relational databases, supporting large
subsets of the standard SQL query language. Encouragingly,
the feature taxonomy was sufficiently rich to enable us to
capture the capabilities of these NewSQL databases in
QuABaseBD.

Figure 10 is a simple visualization of the populated feature
taxonomy that we can generate by querying QuABaseBD. It
shows how each of the nine databases in the knowledge base
relate to a value for the Load Balancing feature in the
Scalability category. This visualization clearly shows how the
databases cluster around the different feature values. Being
able to convey such information visually is important as it
makes it straightforward for architects to focus on features of
interest and see how databases compare. As the number of
databases in QuABaseBD grows, we will develop further
visualizations to help convey the information is a concise and
informative manner.

VI. FURTHER WORK AND CONCLUSIONS
We are currently working towards finalizing QuABaseBD

for public release. To this end we are testing the knowledge
base functionality, and validating with experts on each
database that our curated values for the database features are
valid. We believe that as a curated scientific knowledge base,
there are high expectations that the content in QuABaseBD is
trustworthy at all times. To this end, we are working to design
a systematic curation process where a small cohort of experts
will be responsible for changes to the content. We anticipate
that visitors to the knowledge base will be able to suggest
changes through associated comments pages, and these
proposals will be assessed for inclusion by the curators.

The SMW platform has provided a usable interface for
these architects to derive answers to questions in a short
amount of time. The platform’s semantic metamodel,
combined with the forms for content entry and templates for
content rendering, allowed us to represent a novel domain
knowledge model for big data architecture and technology in a
form (a wiki) that users are familiar with.

After deployment, we will continue to expand the
QuABaseBD content, and have identified several areas for
future work. Manual creation and maintenance of content is
inefficient, as the scope of the content is expanded to cover
more of the database product landscape. Automation of these
tasks is therefore needed, using technology such as machine
learning to extract content from product documentation.

The terminology used in the database feature taxonomy
needs further study. We chose terms that are abstract and
general, rather than adopting implementation-specific terms. In
some cases, adding alternative terminology for feature values
may increase usability. We also anticipate expanding and

restructuring the taxonomy as we receive feedback from the
community.

We hope that QuABaseDB can become an enduring
resource to support the design of big data systems. We also
hope it will demonstrate the potential of curated, dynamic
knowledge bases as sources of highly reliable scientific
knowledge, as well as the basis for a next generation of
software engineering decision support tools.

ACKNOWLEDGMENT
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. References herein to any specific
commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software
Engineering Institute. This material has been approved for
public release and unlimited distribution. DM-0002076.

REFERENCES
[1] M. Lehman. "Programs, life cycles, and laws of software evolution."

Proc. IEEE 68.9 (1980): 1060-1076.
[2] J. Bosch. "From software product lines to software ecosystems." In

Proc. of the 13th Intl. Software Product Line Conf., 2009.
[3] A. S. Jadhav and R. M. Sonar. “Framework for evaluation and selection

of the software packages: A hybrid knowledge based system approach,”
J. Syst. Softw. 84, 8 (August 2011), 1394-1407.

[4] A. Liu, I. Gorton. "Accelerating COTS middleware acquisition: the i-
Mate process," Software, vol.20, no.2, pp.72,79, Mar/Apr 2003.

[5] J. Zahid, A. Sattar, and M. Faridi. "Unsolved Tricky Issues on COTS
Selection and Evaluation." Global Journal of Computer Science and
Technology, 12.10-D (2012).

[6] C. Becker, M. Kraxner, M. Plangg, et al. “Improving decision support
for software component selection through systematic cross-referencing
and analysis of multiple decision criteria”. In Proc. 46th Hawaii Intl.
Conf. on System Sciences (HICSS), pp. 1193-1202, 2013.

[7] N. Rozanski & E. Woods. Software systems architecture: working with
stakeholders using viewpoints and perspectives. Addison-Wesley, 2011.

[8] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing:
current state and future opportunities,” in Proc. 14th Int. Conf. on
Extending Database Technology (EDBT/ICDT '11), Uppsala, Sweden,
2011, pp. 530-533.

[9] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Amazon's
Highly Available Key-value Store,” in Proc. 21st ACM SIGOPS Symp.
on Operating Systems Principles (SOSP '07), Stevenson, WA, USA,
2007, pp. 205-220. doi: 10.1145/1294261.1294281.

[10] F. Chang, J. Dean, S. Ghemawat, et al., “Bigtable: A Distributed Storage
System for Structured Data,” ACM Trans. Comput. Syst., vol. 26, no. 2,
2008.

[11] P. J. Sadalage and M. Fowler, NoSQL Distilled. Addison-Wesley
Professional, 2012.

[12] E. Brewer, “CAP twelve years later: How the "rules" have changed,”
Computer, vol. 45, no. 2, pp. 23-29, February 2012.

[13] I. Gorton, I and J. Klein "Distribution, Data, Deployment: Software
Architecture Convergence in Big Data Systems." Software, accepted
(2014).

[14] J. Klein, I. Gorton, N. Ernst, et al., “Performance Evaluation of NoSQL
Databases: A Case Study,” in Proc. of 1st Workshop on Performance
Analysis of Big Data Systems (PABS 2015), Austin, TX, USA, 2015.

[15] M. A Babar, T. Dingsøyr, P. Lago, H. van Vliet. Software architecture
knowledge management: theory and practice, Springer-Verlag. 2009

[16] P. Kruchten. "An ontology of architectural design decisions in software
intensive systems." In Proc. 2nd Groningen Workshop on Software
Variability. 2004.

[17] Art Akerman, and Jeff Tyree. "Using ontology to support development
of software architectures," IBM Systems Journal, 45:4 (2006): 813-825.

[18] F. de Almeida, F. Ricardo, R. Borges, et al. "Using Ontologies to Add
Semantics to a Software Engineering Environment." SEKE. 2005.

[19] H-J. Happel and S. Seedorf. "Applications of ontologies in software
engineering." In Proc. Workshop on Sematic Web Enabled Software
Eng. (SWESE) on the ISWC. 2006.

[20] H. Knublauch,. "Ontology-driven software development in the context
of the semantic web: An example scenario with Protege/OWL." In Proc.
1st Intl. Workshop on the Model-driven Semantic Web (MDSW2004).
Monterey, California, USA. 2004.

[21] L. T. Babu, et al. "ArchVoc-towards an ontology for software
architecture." In Proc. 29th Intl. Conf. on Software Eng. Workshops,
IEEE Computer Society, 2007.

[22] C. Pahl, S. Giesecke, and W. Hasselbring. "An ontology-based approach
for modelling architectural styles." Software Architecture (2007): 60-75.

[23] C. A. Welty and D. A. Ferrucci. "A formal ontology for re-use of
software architecture documents." In Proc. 14th IEEE Intl. Conf. on
Automated Software Eng., 1999.

[24] P. Kruchten, R. Capilla, and J.C. Dueas. "The decision view's role in
software architecture practice." Software, 26:2 (2009): 36-42.

[25] P. Kruchten, P. Lago and H. van Vliet, “Building up and Reasoning
about Architectural Knowledge”. In Proc. 2nd International Conference
on the Quality of Software Architectures (QoSA), pp. 39-47, 2006.

[26] J.S. van der Ven, A. Jansen, J. Nijhuis, et al, “Design decisions: The
Bridge between Rationale and Architecture”, In Rationale Management
in Software Engineering, A.H. Dutoit, et al., eds, Springer, pp. 329-346,
2006.

[27] A. Jansen and J. Bosch, “Software Architecture as a Set of Architectural
Design Decisions”, In Proc. 5th Working IEEE/IFIP Conf. on Software
Arch. (WICSA), pp. 109-120, 2005.

[28] R.C. de Boer, R. Farenhorst, P. Lago, et al, “Architectural Knowledge:
Getting to the Core”. In Proc. 3rd Intl. Conf. on the Quality of Software
Architectures (QoSA), pp. 197-214, 2007.

[29] A. Jansen, J.S. van der Ven, P. Avgeriou, et al, “Tool Support for
Architectural Decisions”. In Proc. 6th Working IEEE/IFIP Conf. on
Software Arch. (WICSA), pp. 44-53, 2007.

[30] M. Shahin, P. Liang, M.R. Khayyambashi, “Architectural design
decision: Existing models and tools,” In Proc. WICSA/ECSA 2009, pp.
293-296, 2009.

[31] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 3rd Edition. Addison-Wesley, 2013.

